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SUMMARY

This paper examines the effect of fluid free surfaces in slack tanks on a vessel’s transverse, static stability. The exact,
transverse movement of fluid in a half-full, rectangular tank and its effect on vessel stability is derived. This is compared
with results from computer software that also models the static position of the fluid in the tank, including the effects of
both heel and trim; the traditional correction to vertical centre of gravity based on upright second moment of area of the
tank waterplane; and the IMO free surface moment method as described in IMO A.749(18) and MSC.75(69)[1, 2,§3.3].
Once validated, the application of the computer software has been demonstrated by using it to examine the free surface
effect of tanks at filling conditions other than 50%.

NOMENCLATURE

A Area m2

b Tank breadth m
CG Centre of gravity
FSM Free surface “moment” kg m
GM Separation of metacentre and centre of

gravity (ship axis system) m
GZ Righting lever (arm) m
I Transverse2nd moment

of area about area centroid m4

h Tank height m
T Transverse lever (ship axis system) m
V Vertical lever (ship axis system) m

δy Horizontal shift of tank CG
(earth-fixed axis system) m

δyCond.A Horizontal shift of tank CG for Condition A
(earth-fixed axis system) m

δys Horizontal shift of ship CG
(earth-fixed axis system) m

φ Heel angle rad (or◦)
∇ Volume of displacement m3

ρ Fluid density kg m-3

subscripts
tri triangle
rec rectangle
imm immersed
em emerged
s ship
t tank

1 INTRODUCTION

In this paper, the static effect of fluid shift due to heel in
a half-filled, rectangular cross-section, prismatic tank is
derived theoretically. These results are compared with the
commonly used method of raising the vessel’s effective

centre of gravity based on the upright, transverse second
moment of inertia of the tank’s waterplane. Depending on
the tank’s aspect ratio, the actual effect of the fluid shift in
the tank can be significantly different from that estimated
using this method.

The theoretical results are then used to validate a software
program, Hydromax[3], which calculates the actual, static,
position of the fluid in the tank, taking into account the
effects of both heel and trim.

An example of the type of investigation which can be made
using this type of software is included. In this paper, the
effect of tank loading is investigated, but the effect of tank
shape or other parameters could also be investigated.

Finally and perhaps most importantly, the IMO free sur-
face correction is examined. It is shown that the equations
specified in the IMO Code on Intact Stability[1, 2,§3.3]
are derived from the same theoretical analysis as that pre-
sented in this paper, i.e.: the effect of a half-filled, rectan-
gular cross-section, prismatic tank. It is also shown that
the IMO equations arenot valid for the complete range
of heel angles and also a different interpretation of “free
surface moment” is used by IMO. In the IMO code, these
limitations are not highlighted and may not be apparent to
the practitioner unless a similar analysis as that presented
here is undertaken.

Note that this work assumes a quasi-static condition and
no dynamic effects such as sloshing are considered.

2 FLUID SHIFT IN HALF-FULL, RECTANGU-
LAR TANK

For the sake of simplicity we shall consider a prismatic
tank, with rectangular cross-section, half-full of fluid. We
shall also assume that the vessel is fixed in trim and hence
look at the transverse cross-section only.

There are three conditions depending on the heel angle of
the vessel. The two main conditions are illustrated in Fig-
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ure 1 and the remaining condition is the inverted case of
Condition A. Condition A is true for the heel angle range
given by Equation 1; Condition A Inverted is valid for the
heel angle range given by Equation 2 and Condition B is
true for the middle heel angle range given by Equation 3.

Condition A (moderate angle of heel)

0 ≤ φ ≤ tan−1

(
h

b

)
(1)

Condition A inverted

π − tan−1

(
h

b

)
≤ φ ≤ π (2)

Condition B (increased angle of heel)

tan−1

(
h

b

)
≤ φ ≤ π − tan−1

(
h

b

)
(3)

In the derivation presented below, the shift of the tank cen-
tre of gravity (CG) is calculated in the ship axis system, the
horizontal shift of the tank CG in the earth-fixed axis sys-
tem is then easily found by simply rotating the coordinate
system.

2.1 CONDITION A

Consider the situation as shown in Figure 2, where the
fluid in the tank has moved due to the vessel heeling to an
angleφ. The area of the immersed and emerged triangles
is given by Equation 4

A =
1
2
× b

2
× b tanφ

2
=

b2 tanφ

8
(4)

We shall now find the shift of the fluid CG in the ship co-
ordinate system. The transverse and vertical components
of the centroid of the immersed triangle, measured from
the upright tank CG (in the ship axis system), are given by
Equations 5 and 6 respectively.

Timm =
2
3
× b

2
=

b

3
(5)

Vimm =
h

2
+

1
3
× b tanφ

2
=

h

2
+

b tanφ

6
(6)

Similarly, the centroid of the emerged triangle is given by
Equations 7 and 8 respectively.

Tem =
2
3
× −b

2
=
−b

3
(7)

Vem =
h

2
−×1

3
b tanφ

2
=

h

2
− b tanφ

6
(8)

The CG of the fluid in the heeled tank, in the ship coor-
dinate system, can be found by taking moments about the
original upright tank CG – Equations 9 and 10.

T
bh

2
= −A× Tem + A× Timm

T
bh

2
=

−b2 tanφ

8
× −b

3
+

b2 tanφ

8
× b

3

T =
b2 tanφ

6h
(9)

V
bh

2
= −A× Vem + A× Vimm

V
bh

2
=

−b2 tanφ

8
×

(
h

2
− b tanφ

6

)
+

b2 tanφ

8
×

(
h

2
+

b tanφ

6

)
V =

b2 tan2 φ

12h
(10)

The reduction of GZ,δGZ, which is equal to the horizon-
tal shift of the vessel CG in the earth-fixed axis system,
δys, can be calculated from the horizontal shift of the tank
CG in the earth-fixed axis system,δy, by taking moments
about the original vessel CG – as shown in Equation 11.

δys∇sρs = δy∇tρt

δys = δGZ = δy
∇tρt

∇sρs
(11)

An equivalent free surface moment, FSM, can be calcu-
lated by considering the effect of the tank CG shift to be
equivalent to a virtual rise in CG (this is the traditional ap-
proach). In this case,δGZ = δVCG sinφ and the virtual
rise in the CG is given by Equation 12.

δVCG =
FSM
∇sρs

(12)

Hence

δGZ =
FSM
∇sρs

sinφ (13)

Rearranging Equation 13, the equivalent FSM can be cal-
culated from Equation 14:

FSM =
δGZ∇sρs

sinφ
(14)

SubstitutingδGZ from Equation 11 into Equation 14 re-
lates the horizontal shift of tank CG (δy) to the equivalent
FSM – Equation 15.

FSM =
δy∇tρt

sinφ
(15)

Now the horizontal shift of the tank CG in the earth-fixed
axis system is given by Equation 16.

δy = T cos φ + V sinφ

δy =
b2 tanφ

6h
cos φ +

b2 tan2 φ

12h
sinφ (16)
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Condition A Condition B

Figure 1: Two conditions arise depending on the heel angle

Figure 2: Shift of fluid for0 ≤ φ ≤ tan−1 (h/b)

Thus substituting forδy, Equation 16, into Equation 15
yields the equivalent FSM – Equation 17 which simplifies
to Equation 18.

FSM =
(

b2 tanφ

6h
cos φ +

b2 tan2 φ

12h
sinφ

)
∇tρt

sinφ
(17)

FSM =
∇tρtb

2

6h

(
1 +

tan2 φ

2

)
(18)

2.2 CONDITION A INVERTED

In this condition, it may be shown that the horizontal shift
in tank CG, in the earth-fixed axis system is, given by
Equation 19:

δy =
h

2
sinφ− δyCond.A

δy =
h

2
sinφ− b2 tanφ

6h
cos φ− b2 tan2 φ

12h
sinφ

(19)

whereδyCond.A is the earth-fixed, horizontal shift for Con-
dition A – Equation 18.

Substituting forδy, Equation 19, into Equation 15 and
simplifying, yields the equivalent FSM – Equation 20.

FSM =
∇tρtb

2

6h

(
3h2

b2
− 1− tan2 φ

2

)
(20)

2.3 CONDITION B

Now we shall consider the situation as shown in Figure 3,
where the heel angle has been increased. The immersed
and emerged areas can be divided into a triangle and a
rectangle. Considering the triangles first: the area of the
immersed and emerged triangles is given by Equation 21.

Atri =
1
2
× h

2
× h

2 tanφ
=

h2

8 tanφ
(21)

The transverse and vertical components of the centroid of
immersed triangle are given by Equations 22 and 23 re-
spectively.

Ttri imm =
2
3
× h

2 tanφ
=

h

3 tan φ
(22)

Vtri imm =
h

4
+

1
3
× h

2
=

5h

12
(23)
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Figure 3: Shift of fluid attan−1(h/b) < φ < 2π − tan−1(h/b)

Similarly, the centroid of the emerged triangle is given by
Equations 24 and 25 respectively.

Ttri em =
2
3
× −h

2 tanφ
=

−h

3 tan φ
(24)

Vtri em =
−h

4
+

2
3
× h

2
=

h

12
(25)

Now consider the rectangles: the area of the immersed and
emerged rectangles is given by Equation 26.

Arec =
1
2
× h

2
×

(
b− h

tanφ

)
=

1
4

(
bh− h2

tanφ

)
(26)

The transverse and vertical components of the centroid of
immersed rectangle are given by Equations 27 and 28 re-
spectively.

Trec imm =
h

2 tanφ
+

1
4

(
b− h

tanφ

)
=

1
4

(
b +

h

tanφ

)
(27)

Vrec imm =
h

2
(28)

Similarly, the centroid of the emerged rectangle is given
by Equations 29 and 30 respectively.

Trec em =
−h

2 tanφ
− 1

4

(
b− h

tanφ

)
=

−1
4

(
b +

h

tanφ

)
(29)

Vrec em= 0 (30)

The CG of the fluid in the heeled tank, in the ship coor-
dinate system, can be found by taking moments about the
upright CG – Equations 31 and 32

T
bh

2
= −Atri × Ttri em−Arec × Trec em

+Atri × Ttri imm + Arec × Trec imm

T
bh

2
= − h2

8 tan φ
× −h

3 tanφ

−1
4

(
bh− h2

tanφ

)
× −1

4

(
b +

h

tanφ

)
+

h2

8 tan φ
× h

3 tanφ

+
1
4

(
bh− h2

tanφ

)
× 1

4

(
b +

h

tanφ

)
T =

b

4
− h2

12b tan2 φ
(31)

V
bh

2
= −Atri × Vtri em−Arec × Vrec em

+Atri × Vtri imm + Arec × Vrec imm

V
bh

2
= − h2

8 tanφ
× h

12
− 1

4

(
bh− h2

tanφ

)
× 0

+
h2

8 tanφ
× 5h

12
+

1
4

(
bh− h2

tanφ

)
× h

2

V =
h

4
− h2

6b tanφ
(32)

Again the horizontal shift of the tank CG in the earth-fixed

c© Royal Institution of Naval Architects 2004



Figure 4: Comparison of theoretical effective FSM with
Hydromax fluid simulation, expressed as percentage of
FSM calculated from the upright tank waterplane.

axis system is given by Equation 33:

δy = T cos φ + V sinφ

δy =
(

b

4
− h2

12b tan2 φ

)
cos φ

+
(

h

4
− h2

6b tanφ

)
sinφ (33)

and hence the equivalent FSM is given by Equation 34,
which simplifies to Equation 35

FSM =
δy∇tρt

sinφ

FSM =
[(

b

4
− h2

12b tan2 φ

)
cos φ

+
(

h

4
− h2

6b tanφ

)
sinφ

]
∇tρt

sinφ
(34)

FSM = ∇tρt

[
h

4
+

b

4 tanφ
− h2

6b tanφ

(
1 +

1
2 tan2 φ

)]
(35)

3 STATIC SIMULATION OF FLUID

The equations derived above hold only for prismatic tanks
with rectangular cross-section, half-filled with fluid. Al-
though similar equations could be derived for other cross-
section shapes, this is rather a cumbersome approach.
With a computer model, it is relatively easy to compute
the actual position of the fluid in the tank as the vessel
heels and trims. This calculation method is available in
Formation Design Systems’ Hydromax stability software.
Using this (or similar software) it is possible to investi-
gate arbitrarily shaped tanks, that are not necessarily pris-
matic, with any level of fluid. Figure 4 shows a com-
parison of the theoretical FSM derived in this paper with

Figure 5: Effect of tank fluid volume on effective FSM, ex-
pressed as percentage of FSM calculated from the upright
tank waterplane, for a 1m×1m×1m cubic tank.

Figure 6: Effect of tank breadth:height ratio (b/h) on ef-
fective FSM (broad tanks), expressed as percentage of
FSM calculated from the upright tank waterplane.

the Hydromax fluid simulation. The results are presented
for two prismatic tanks, one having a square cross-section
(b/h = 1) and the other having a rectangular cross-section
(b/h = 1.722). Results are expressed as a percentage of
the FSM as computed from the upright waterplane (Itρt)
and as expected tend to 100% of the upright FSM at zero
heel.

Hydromax has then been used to investigate the effect of
tank fluid level on the FSM in the following section.

3.1 EFFECT OF VOLUME OF FLUID IN TANK

The traditional FSM based on the upright tank geometry is
given by Equation 36

FSMupright = Itρt (36)
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Figure 7: Effect of tank breadth:height ratio (b/h) on ef-
fective FSM (tall tanks), expressed as percentage of FSM
calculated from the upright tank waterplane.

whereIt is the transverse second moment of area of tank
waterplane, about its centroid, for the upright tank andρt

is the density of the fluid in the tank.

It can be seen that Equation 36 is independent of the vol-
ume of fluid in the tank. However, in reality this is not the
case and the effective FSM does depend on the volume of
fluid in the tank. Figure 5 shows the actual effect of the
fluid movement in the tank as an effective FSM for differ-
ent levels of fluid in the tank. (The same effect is observed
if the tank isx% full or 100 − x% full.) It can be seen
that the maximum effect occurs when the tank is half-full
(50%). These results were computed for a 1m×1m×1m
cubic tank.

3.2 EFFECT OF TANK BREADTH:HEIGHT RATIO

The effect of tank breadth:height ratio (b/h) on FSM has
been investigated and the results presented in Figures 6
and 7. The values are expressed as a percentage of the
FSM calculated from the upright waterplane. These results
are for a half-full tank with rectangular cross-section.

The results for tanks with,b/h ≥ 1.0, tanks are shown in
Figure 6. For the broader tanks,b/h > 3.0, the effective
FSM reduces rapidly compared with the upright FSM at
heel angles above30 ◦.

It can be seen that there is a dramatic effect for tall, nar-
row tanks (Figure7), especially at large heel angles. This
could be an important consideration for self-righting craft
or craft that are expected to operate in severe conditions.
In some situations, where large angles of vessel heel are
expected, the case could be made for broad tanks, which
despite reducing initial stability would be less detrimental
as heel angle increases.

However, perhaps a more useful comparison can be made
by examining the actual effective FSM for tanks of dif-

ferent breadth:height ratio but constant total capacity; this
has been done and the results are shown in Figure 8. In
this case the broad tanks have significantly higher FSM up-
right, but the FSM diminishes quite rapidly as heel angle
increases and becomes negative once the vessel is heeled
above approximately 100◦. The narrow tanks, on the other
hand, have a reduced FSM in the upright condition, but
the FSM increases with heel angle, with a significant jump
at approximately 90◦. Hence at heel angles above about
80◦, the broad tanks have reduced FSM compared with
the narrow tanks (for the same capacity).

4 COMPARISON WITH IMO

In §3.3, the IMO code on intact stability[1], amended by
[2], describes how fluid free surfaces in slack tanks should
be taken into account, the relevant section of the code is
reproduced below:

3.3 Effect of free surfaces of liquids in tanks

...

3.8The values ofMfs for each tank may be de-
rived from the formula:

Mfs = vbρhk
√

δ

where:

Mfs is the free surface moment at any inclina-
tion, in m tonnes

v is the total tank capacity, in m3

b is the tank maximum breadth, in m

ρ is the mass density of liquid in the tank, in
tonnes/m3

δ is equal tov/blh (the tank block coefficient)

h is the tank maximum height, in m

l is the tank maximum length, in m

k is the dimensionless coefficient to be deter-
mined from table 3.3.3 according to the ra-
tio b/h. The intermediate values are deter-
mined by interpolation.

Table 3.3.3 – Values for coefficientk for calcu-
lating free surface correction1

k =
sinφ

12

(
1 +

tan2 φ

2

)
b/h

wherecot φ ≤ b/h

k =
cos φ

8

(
1 +

tanφ

b/h

)
− cos φ

12 (b/h)2

(
1 +

cot2 φ

2

)
wherecot φ > b/h

1Only the equations fork are reproduced here, not the entire table.
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Figure 8: Effect of tank breadth:height ratio (b/h) on effective FSM (kg m), for a half-filled, 100kg total capacity, rectan-
gular tank.

Now assuming a rectangular tank, for whichδ = 1.0, and
that the tank is half-full (i.e.v = 2∇t), the IMO equation
for Mfs (quoted above) may be rearranged as follows:

Condition A: cot φ ≥ b/h

Mfs =
vtb

2ρt

6h

(
1 +

tan2 φ

2

)
sinφ (37)

Condition B: cot φ < b/h

Mfs = vtρt

[
h

4
+

b

4 tanφ

− h2

6b tanφ

(
1 +

1
2 tan2 φ

)]
sinφ

(38)

Comparison of these equations (Equations 37 and 38)
with the equations derived in§2.1 and 2.3 (Equations 18
and 35) shows that the equations are similar except for
the sinφ term. This implies thatMfs is not in fact the
free surface moment but the reduction in ship righting mo-
ment due to the tank fluid free surface. It should also be
noted that Equation 38 is not valid for all angles where
cot φ < b/h, but is limited by the range as described by
Equation 3.

It is worth pointing out that if the equations in [1,§3.3.8]
are used verbatim to calculate the FSM, the FSM for the
vessel in the upright condition will be zero resulting in no
reduction to GM.

5 CONCLUSIONS

The effect of fluid movement in slack tanks on static sta-
bility has been derived from first principles for tanks with
rectangular cross-section, half-full of fluid. These equa-
tions have been used to verify the static simulation of

fluid movement in Formation Design Systems’ hydrostat-
ics program Hydromax.

Numerical experiments with Hydromax indicated that the
half-full condition was the worst condition for a cubic
tank. The 20% and 80% full conditions were reasonably
close to the FSM calculated from the upright tank free sur-
face; below 20% and above 80% full, the effective FSM
was generally less than upright and for tanks between 20%
and 80% full, the effective FSM was generally greater than
upright.

An investigation into the effect of tank breadth:height ratio
(b/h) has also been made. Some interesting results were
found for tall, narrow tanksb/h < 1.0, the effective FSM
was found to increase dramatically as the heel angle passes
through90 ◦. For broad tanks,b/h ≥ 3.0, the effective
FSM reduces rapidly compared with the upright FSM at
heel angles above30 ◦.

A comparison with the IMO treatment of fluid free sur-
faces in slack tanks[1, 2] has been made. This indicated
that there is a typographical error in [1,§3.3.3] and [2,
§3.3.8], these documents state that: “Mfs is the free sur-
face moment at any inclination, in m tonnes”, however,
examination of the equations provided in these documents
indicate thatMfs is in fact the reduction in GZ due to the
free surface of the tank in question.

It has been shown that, even for the relatively simple case
of a half-filled, rectangular cross-section tank, the FSM is
far from constant as the vessel heels. Under many condi-
tions, the FSM varies dramatically from the FSM in the
upright condition. For these reasons and given the real-
ity that virtually all vessel hydrostatics are calculated by
computer, it is recommended that calculation of a vessel’s
large angle, static stability should accurately account for
the effects of fluid free surfaces in tanks by modelling the
actual position of the fluid in the tank at any arbitrary an-
gle of heel and trim rather than approximating this effect
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from the tank free surface in the upright condition. It is
acknowledged that this practice is accepted by some au-
thorities including IMO[2,§3.3.7.2.1].
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